AGE/ GENDER : 38 YRS/FEMALE PATIENT ID : 1540226

COLLECTED BY : REG. NO./LAB NO. : 012407060039

 REFERRED BY
 : 06/Jul/2024 01:06 PM

 BARCODE NO.
 : 01512632
 COLLECTION DATE
 : 06/Jul/2024 01:08 PM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 06/Jul/2024 01:34 PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit Biological Reference interval

SWASTHYA WELLNESS PANEL: 1.5 COMPLETE BLOOD COUNT (CBC)

RED BLOOD CELLS (RBCS) COUNT AND INDICES

HAEMOGLOBIN (HB) by CALORIMETRIC	8.4 ^L	gm/dL	12.0 - 16.0
RED BLOOD CELL (RBC) COUNT by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	4.67	Millions/cmm	3.50 - 5.00
PACKED CELL VOLUME (PCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	29.8 ^L	%	37.0 - 50.0
MEAN CORPUSCULAR VOLUME (MCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	63.7 ^L	fL	80.0 - 100.0
MEAN CORPUSCULAR HAEMOGLOBIN (MCH) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	17.9 ^L	pg	27.0 - 34.0
MEAN CORPUSCULAR HEMOGLOBIN CONC. (MCHC) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	28.1 ^L	g/dL	32.0 - 36.0
RED CELL DISTRIBUTION WIDTH (RDW-CV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	19.2 ^H	%	11.00 - 16.00
RED CELL DISTRIBUTION WIDTH (RDW-SD) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	45.7	fL	35.0 - 56.0
MENTZERS INDEX by CALCULATED	13.64	RATIO	BETA THALASSEMIA TRAIT: < 13.0 IRON DEFICIENCY ANEMIA: >13.0
GREEN & KING INDEX by CALCULATED	26.06	RATIO	BETA THALASSEMIA TRAIT: < = 65.0
			IRON DEFICIENCY ANEMIA: > 65.0
WHITE BLOOD CELLS (WBCS)			
TOTAL LEUCOCYTE COUNT (TLC) by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	5810	/cmm	4000 - 11000
NUCLEATED RED BLOOD CELLS (nRBCS) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER & MICROSCOPY	NIL		0.00 - 20.00
NUCLEATED RED BLOOD CELLS (nRBCS) %	NIL	%	< 10 %

DIFFERENTIAL LEUCOCYTE COUNT (DLC)

by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER &

MICROSCOPY

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

Page 1 of 20

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039

REFERRED BY REGISTRATION DATE : 06/Jul/2024 01:06 PM **COLLECTION DATE** BARCODE NO. :01512632 : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 01:34PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
NEUTROPHILS	57	%	50 - 70
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
LYMPHOCYTES	35	%	20 - 40
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	0/	1 /
EOSINOPHILS	2	%	1 - 6
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY MONOCYTES	4	%	2 - 12
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	6	70	Z - 1Z
BASOPHILS	0	%	0 - 1
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	O	70	0 1
ABSOLUTE LEUKOCYTES (WBC) COUNT			
ABSOLUTE NEUTROPHIL COUNT	3312	/cmm	2000 - 7500
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
ABSOLUTE LYMPHOCYTE COUNT	2034	/cmm	800 - 4900
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
ABSOLUTE EOSINOPHIL COUNT	116	/cmm	40 - 440
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY		,	
ABSOLUTE MONOCYTE COUNT	349	/cmm	80 - 880
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	lanana	0 110
ABSOLUTE BASOPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	/cmm	0 - 110
PLATELETS AND OTHER PLATELET PREDICTIVE MARKER	90		
		,	450000 450000
PLATELET COUNT (PLT) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	335000	/cmm	150000 - 450000
PLATELETCRIT (PCT)	0.36	%	0.10 - 0.36
by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	0.30	/0	0.10 - 0.30
MEAN PLATELET VOLUME (MPV)	11	fL	6.50 - 12.0
by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE			3.33 12.3
PLATELET LARGE CELL COUNT (P-LCC)	119000 ^H	/cmm	30000 - 90000
by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	05.5	0/	11.0 45.0
PLATELET LARGE CELL RATIO (P-LCR)	35.5	%	11.0 - 45.0
by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	15 7	0/	15 0 17 0
PLATELET DISTRIBUTION WIDTH (PDW) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	15.7	%	15.0 - 17.0
NOTE: TEST CONDUCTED ON EDTA WHOLE BLOOD			
MOTE, TEST COMPOCTED ON EDTA WHOLE DECOD			

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) MBBS, MD (PATHOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

GLYCOSYLATED HAEMOGLOBIN (HBA1C)

REPORTING DATE

: 06/Jul/2024 03:33PM

GLYCOSYLATED HAEMOGLOBIN (HbA1c): 5.2 4.0 - 6.4

WHOLE BLOOD

CLIENT CODE.

by HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)

ESTIMATED AVERAGE PLASMA GLUCOSE 102.54 mg/dL 60.00 - 140.00

by HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)

INTERPRETATION:

AS PER AMERICAN DIABETES ASSOCIATION (ADA):			
REFERENCE GROUP	GLYCOSYLATED HEMOGL	OGIB (HBAIC) in %	
Non diabetic Adults >= 18 years	<5.7		
At Risk (Prediabetes)	5.7 – 6.	4	
Diagnosing Diabetes	>= 6.5		
V V	Age > 19 Years		
	Goals of Therapy:	< 7.0	
Therapeutic goals for glycemic control	Actions Suggested:	>8.0	
	Age < 19 Y	ears	
	Goal of therapy:	<7.5	

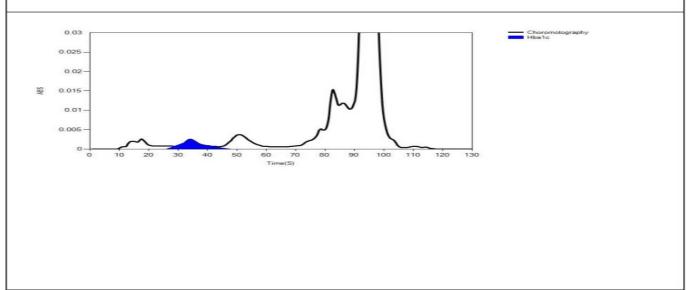
COMMENTS:

- 1. Glycosylated hemoglobin (HbA1c) test is three monthly monitoring done to assess compliace with therapeutic regimen in diabetic patients.
- 2. Since Hb1c reflects long term fluctuations in blood glucose concentration, a diabetic patient who has recently under good control may still have high concentration of HbAlc. Converse is true for a diabetic previously under good control but now poorly controlled.
- 3. Target goals of < 7.0 % may be beneficial in patients with short duration of diabetes, long life expectancy and no significant cardiovascular disease. In patients with significant complications of diabetes, limited life expectancy or extensive co-morbid conditions, targetting a goal of < 7.0% may not be 4.High
- HbA1c (>9.0 -9.5 %) is strongly associated with risk of development and rapid progression of microvascular and nerve complications
- 5. Any condition that shorten RBC life span like acute blood loss, hemolytic anemia falsely lower HbA1c results.
- 6.HbA1c results from patients with HbSS,HbSC and HbD must be interpreted with caution, given the pathological processes including anemia, increased red cell turnover, and transfusion requirement that adversely impact HbA1c as a marker of long-term gycemic control.
- 7. Specimens from patients with polycythemia or post-spienctomy may exhibit increse in HbA1c values due to a somewhat longer life span of the red cells.

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039


REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM **COLLECTION DATE** BARCODE NO. :01512632 : 06/Jul/2024 01:08PM

REPORTING DATE CLIENT CODE. : KOS DIAGNOSTIC LAB : 06/Jul/2024 03:33PM **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

Name :	Case:	Patient Type :	Test Date	: 06/07/2024	15:21:44
Age:	Department:	Sample Type: Whole Blood EDTA	Sample Id	: 01512632	
Gender:			Total Area	: 7950	

Peak Name	Retention Time(s)	Absorbance	Area	Result (Area %)
HbA0	70	2178	7151	86.7
HbA1c	37	38	425	5.2
La1c	25	25	194	2.3
HbF	19	8	9	0.1
Hba1b	13	26	90	1.1
Hba1a	10	21	81	1.0

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) MBBS, MD (PATHOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. :012407060039

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

ERYTHROCYTE SEDIMENTATION RATE (ESR)

REPORTING DATE

ERYTHROCYTE SEDIMENTATION RATE (ESR)

mm/1st hr

0 - 20

: 06/Jul/2024 01:42PM

by MODIFIED WESTERGREN AUTOMATED METHOD

INTERPRETATION:

CLIENT CODE.

- 1. ESR is a non-specific test because an elevated result often indicates the presence of inflammation associated with infection, cancer and auto-
- immune disease, but does not tell the health practitioner exactly where the inflammation is in the body or what is causing it.

 2. An ESR can be affected by other conditions besides inflammation. For this reason, the ESR is typically used in conjunction with other test such as C-reactive protein
- 3. This test may also be used to monitor disease activity and response to therapy in both of the above diseases as well as some others, such as systemic lupus erythematosus

CONDITION WITH LOW ESR

A low ESR can be seen with conditions that inhibit the normal sedimentation of red blood cells, such as a high red blood cell count (polycythaemia), significantly high white blood cell count (leucocytosis), and some protein abnormalities. Some changes in red cell shape (such as sickle cells in sickle cell anaemia) also lower the ESR.

- NOTE:

- 1. ESR and C reactive protein (C-RP) are both markers of inflammation.
 2. Generally, ESR does not change as rapidly as does CRP, either at the start of inflammation or as it resolves.
 3. CRP is not affected by as many other factors as is ESR, making it a better marker of inflammation.
 4. If the ESR is elevated, it is typically a result of two types of proteins, globulins or fibrinogen.
 5. Women tend to have a higher ESR, and menstruation and pregnancy can cause temporary elevations.
 6. Drugs such as dextran, methyldopa, oral contraceptives, penicillamine procainamide, theophylline, and vitamin A can increase ESR, while services and quiping may decrease it. aspirin, cortisone, and quinine may decrease it

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

CLINICAL CHEMISTRY/BIOCHEMISTRY GLUCOSE FASTING (F)

REPORTING DATE

: 06/Jul/2024 02:09PM

92.17 GLUCOSE FASTING (F): PLASMA mg/dL NORMAL: < 100.0

by GLUCOSE OXIDASE - PEROXIDASE (GOD-POD) PREDIABETIC: 100.0 - 125.0 DIABETIC: > 0R = 126.0

CLIENT CODE.

INTERPRETATION
IN ACCORDANCE WITH AMERICAN DIABETES ASSOCIATION GUIDELINES:
1. A fasting plasma glucose level below 100 mg/dl is considered normal.
2. A fasting plasma glucose level between 100 - 125 mg/dl is considered as glucose intolerant or prediabetic. A fasting and post-prandial blood test (after consumption of 75 gms of glucose) is recommended for all such patients.
3. A fasting plasma glucose level of above 125 mg/dl is highly suggestive of diabetic state. A repeat post-prandial is strongly recommended for all such patients. A fasting plasma glucose level in excess of 125 mg/dl on both occasions is confirmatory for diabetic state.

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039

REFERRED BY REGISTRATION DATE : 06/Jul/2024 01:06 PM **COLLECTION DATE** BARCODE NO. :01512632 : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB REPORTING DATE CLIENT CODE. : 06/Jul/2024 02:18PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
	LIPID PROFILE	: BASIC	
CHOLESTEROL TOTAL: SERUM by CHOLESTEROL OXIDASE PAP	169.03	mg/dL	OPTIMAL: < 200.0 BORDERLINE HIGH: 200.0 - 239.0 HIGH CHOLESTEROL: > OR = 240.0
TRIGLYCERIDES: SERUM by GLYCEROL PHOSPHATE OXIDASE (ENZYMATIC)	64.86	mg/dL	OPTIMAL: < 150.0 BORDERLINE HIGH: 150.0 - 199.0 HIGH: 200.0 - 499.0 VERY HIGH: > OR = 500.0
HDL CHOLESTEROL (DIRECT): SERUM by SELECTIVE INHIBITION	79.25	mg/dL	LOW HDL: < 30.0 BORDERLINE HIGH HDL: 30.0 - 60.0 HIGH HDL: > OR = 60.0
LDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	88.81	mg/dL	OPTIMAL: < 100.0 ABOVE OPTIMAL: 100.0 - 129.0 BORDERLINE HIGH: 130.0 - 159.0 HIGH: 160.0 - 189.0 VERY HIGH: > OR = 190.0
NON HDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	89.78	mg/dL	OPTIMAL: < 130.0 ABOVE OPTIMAL: 130.0 - 159.0 BORDERLINE HIGH: 160.0 - 189.0 HIGH: 190.0 - 219.0 VERY HIGH: > OR = 220.0
VLDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	12.97	mg/dL	0.00 - 45.00
TOTAL LIPIDS: SERUM by CALCULATED, SPECTROPHOTOMETRY	414.92	mg/dL	350.00 - 700.00
CHOLESTEROL/HDL RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	2.13	RATIO	LOW RISK: 3.30 - 4.40 AVERAGE RISK: 4.50 - 7.0 MODERATE RISK: 7.10 - 11.0 HIGH RISK: > 11.0
LDL/HDL RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	1.12	RATIO	LOW RISK: 0.50 - 3.0 MODERATE RISK: 3.10 - 6.0 HIGH RISK: > 6.0

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) MBBS, MD (PATHOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 02:18PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
TRIGLYCERIDES/HDL RATIO: SERUM	u sa _F	RATIO	3.00 - 5.00

by CALCULATED, SPECTROPHOTOMETRY **INTERPRETATION:**

1. Measurements in the same patient can show physiological & analytical variations. Three serial samples 1 week apart are recommended for Total Cholesterol, Triglycerides, HDL & LDL Cholesterol.

2. As per NLA-2014 guidelines, all adults above the age of 20 years should be screened for lipid status. Selective screening of children above the age of 2 years with a family history of premature cardiovascular disease or those with at least one parent with high total cholesterol is recommended.

3. Low HDL levels are associated with increased risk for Atherosclerotic Cardiovascular disease (ASCVD) due to insufficient HDL being available to participate in reverse cholesterol transport, the process by which cholesterol is eliminated from peripheral tissues.

4. NLA-2014 identifies Non HDL Cholesterol (an indicator of all atherogenic/lipototetes such as LDL, VLDL, IDL, Lpa, Chylomicron remnants) along

with LDL-cholesterol as co-primary target for cholesterol lowering therapy. Note that major risk factors can modify treatment goals for LDL &Non

5. Additional testing for Apolipoprotein B, hsCRP,Lp(a) & LP-PLA2 should be considered among patients with moderate risk for ASCVD for risk refinement

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

CLIENT CODE.

NAME : Mrs. KULBEER KAUR

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval

LIVER FUNCTION TEST (COMPLETE)

REPORTING DATE

: 06/Jul/2024 02:18PM

BILIRUBIN TOTAL: SERUM by DIAZOTIZATION, SPECTROPHOTOMETRY	1.06	mg/dL	INFANT: 0.20 - 8.00 ADULT: 0.00 - 1.20
BILIRUBIN DIRECT (CONJUGATED): SERUM by DIAZO MODIFIED, SPECTROPHOTOMETRY	0.23	mg/dL	0.00 - 0.40
BILIRUBIN INDIRECT (UNCONJUGATED): SERUM by CALCULATED, SPECTROPHOTOMETRY	0.83	mg/dL	0.10 - 1.00
SGOT/AST: SERUM by IFCC, WITHOUT PYRIDOXAL PHOSPHATE	25.83	U/L	7.00 - 45.00
SGPT/ALT: SERUM by IFCC, WITHOUT PYRIDOXAL PHOSPHATE	18.61	U/L	0.00 - 49.00
AST/ALT RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	1.39	RATIO	0.00 - 46.00
ALKALINE PHOSPHATASE: SERUM by Para nitrophenyl phosphatase by amino methyl propanol	93.3	U/L	40.0 - 150.0
GAMMA GLUTAMYL TRANSFERASE (GGT): SERUM by SZASZ, SPECTROPHTOMETRY	40.1	U/L	0.00 - 55.0
TOTAL PROTEINS: SERUM by Biuret, spectrophotometry	8.72 ^H	gm/dL	6.20 - 8.00
ALBUMIN: SERUM by BROMOCRESOL GREEN	4.27	gm/dL	3.50 - 5.50
GLOBULIN: SERUM by CALCULATED, SPECTROPHOTOMETRY	4.45 ^H	gm/dL	2.30 - 3.50
A: G RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	0.96 ^L	RATIO	1.00 - 2.00

INTERPRETATION

NOTE: To be correlated in individuals having SGOT and SGPT values higher than Normal Reference Range. **USE:** Differential diagnosis of diseases of hepatobiliary system and pancreas.

INCREASED:

DRUG HEPATOTOXICITY	> 2
ALCOHOLIC HEPATITIS	> 2 (Highly Suggestive)
CIRRHOSIS	1.4 - 2.0
INTRAHEPATIC CHOLESTATIS	> 1.5
HEPATOCELLULAR CARCINOMA & CHRONIC HEPATITIS	> 1.3 (Slightly Increased)

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : REG. NO./LAB NO. : 012407060039

 REFERRED BY
 : 06/Jul/2024 01:06 PM

 BARCODE NO.
 : 01512632

 COLLECTION DATE
 : 06/Jul/2024 01:08 PM

CLIENT CODE. : KOS DIAGNOSTIC LAB **REPORTING DATE** : 06/Jul/2024 02:18PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit Biological Reference interval

DECREASED:

1. Acute Hepatitis due to virus, drugs, toxins (with AST increased 3 to 10 times upper limit of normal)

2. Extra Hepatic cholestatis: 0.8 (normal or slightly decreased).

PROGNOSTIC SIGNIFICANCE:

NORMAL	< 0.65
GOOD PROGNOSTIC SIGN	0.3 - 0.6
POOR PROGNOSTIC SIGN	1.2 - 1.6

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUĞAM CHOPRA CONSULTANT PATHOLOGIST MBBS , MD (PATHOLOGY)

age 10 of 20

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039

REFERRED BY REGISTRATION DATE : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 02:19PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval			
KIDNEY FUNCTION TEST (COMPLETE)						
UREA: SERUM by urease - glutamate dehydrogenase (gldh)	14.22	mg/dL	10.00 - 50.00			
CREATININE: SERUM by ENZYMATIC, SPECTROPHOTOMETERY	0.65	mg/dL	0.40 - 1.20			
BLOOD UREA NITROGEN (BUN): SERUM by CALCULATED, SPECTROPHOTOMETRY	6.64 ^L	mg/dL	7.0 - 25.0			
BLOOD UREA NITROGEN (BUN)/CREATININE RATIO: SERUM	10.22	RATIO	10.0 - 20.0			
by CALCULATED, SPECTROPHOTOMETRY						
UREA/CREATININE RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	21.88	RATIO				
URIC ACID: SERUM by URICASE - OXIDASE PEROXIDASE	4.2	mg/dL	2.50 - 6.80			
CALCIUM: SERUM by ARSENAZO III, SPECTROPHOTOMETRY	8.93	mg/dL	8.50 - 10.60			
PHOSPHOROUS: SERUM by PHOSPHOMOLYBDATE, SPECTROPHOTOMETRY	3.07	mg/dL	2.30 - 4.70			
<u>ELECTROLYTES</u>						
SODIUM: SERUM by ISE (ION SELECTIVE ELECTRODE)	140.4	mmol/L	135.0 - 150.0			
POTASSIUM: SERUM by ISE (ION SELECTIVE ELECTRODE)	4.32	mmol/L	3.50 - 5.00			
CHLORIDE: SERUM by ISE (ION SELECTIVE ELECTRODE)	105.3	mmol/L	90.0 - 110.0			
ESTIMATED GLOMERULAR FILTERATION RATE						
ESTIMATED GLOMERULAR FILTERATION RATE	115.5					

(eGFR): SERUM by CALCULATED

INTERPRETATION:

To differentiate between pre- and post renal azotemia.

INCREASED RATIO (>20:1) WITH NORMAL CREATININE:

- 1. Prerenal azotemia (BUN rises without increase in creatinine) e.g. heart failure, salt depletion, dehydration, blood loss) due to decreased glomerular filtration rate.
- 2. Catabolic states with increased tissue breakdown.

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 02:19PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

- 3. GI haemorrhage.
- 4. High protein intake.
- 5. Impaired renal function plus
- 6. Excess protein intake or production or tissue breakdown (e.g. infection, GI bleeding, thyrotoxicosis, Cushing's syndrome, high protein diet, burns, surgery, cachexia, high fever).
- 7. Urine reabsorption (e.g. ureter colostomy)
- 8. Reduced muscle mass (subnormal creatinine production)
- 9. Certain drugs (e.g. tetracycline, glucocorticoids)

INCREASED RATIO (>20:1) WITH ELEVATED CREATININE LEVELS:

- 1. Postrenal azotemia (BUN rises disproportionately more than creatinine) (e.g. obstructive uropathy).
- 2. Prerenal azotemia superimposed on renal disease.

DECREASED RATIO (<10:1) WITH DECREASED BUN:

- 1. Acute tubular necrosis.
- 2. Low protein diet and starvation.
- 3. Severe liver disease.
- 4. Other causes of decreased urea synthesis.
- 5. Repeated dialysis (urea rather than creatinine diffuses out of extracellular fluid).
- 6. Inherited hyperammonemias (urea is virtually absent in blood).
- 7. SIADH (syndrome of inappropiate antidiuretic harmone) due to tubular secretion of urea.
- 8. Pregnancy.

DECREASED RATIO (<10:1) WITH INCREASED CREATININE:

- 1. Phenacimide therapy (accelerates conversion of creatine to creatinine).
- 2. Rhabdomyolysis (releases muscle creatinine).
- 3. Muscular patients who develop renal failure.

INAPPROPIATE RATIO:

- 1. Diabetic ketoacidosis (acetoacetate causes false increase in creatinine with certain methodologies, resulting in normal ratio when dehydration should produce an increased BUN/creatinine ratio).
- 2. Cephalosporin therapy (interferes with creatinine measurement). **ESTIMATED GLOMERULAR FILTERATION RATE**:

STIMINED GEOMEROETIK TIETERATION TATTE.					
CKD STAGE	DESCRIPTION	GFR (mL/min/1.73m2)	ASSOCIATED FINDINGS		
G1	Normal kidney function	>90	No proteinuria		
G2	Kidney damage with normal or high GFR	>90	Presence of Protein , Albumin or cast in urine		
G3a	Mild decrease in GFR	60 -89			
G3b	Moderate decrease in GFR	30-59			
G4	Severe decrease in GFR	15-29			
G5	Kidney failure	<15			

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE :06/Jul/2024 02:19PM **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

COMMENTS:

1. Estimated Glomerular filtration rate (eGFR) is the sum of filtration rates in all functioning nephrons and so an estimation of the GFR provides a measure of functioning nephrons of the kidney.

2. eGFR calculated using the 2009 CKD-EPI creatinine equation and GFR category reported as per KDIGO guideline 2012

3. In patients, with eGFR creatinine between 45-59 ml/min/1.73 m2 (G3) and without any marker of Kidney damage, It is recommended to measure eGFR with Cystatin C for confirmation of CKD

eGFR should be calculated using Serum Cystatin C
7. A decrease in eGFR implies either progressive renal disease, or a reversible process causing decreased nephron function (eg, severe dehydration). ADVICE:

KDIGO guideline, 2012 recommends Chronic Kidney Disease (CKD) should be classified based on cause, eGFR category and Albuminuria (ACR) category. GFR & ACR category combined together reflect risk of progression and helps Clinician to identify the individual who are progressing at more rapid rate than anticipated

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
	IRON PROF	ILE	
IRON: SERUM by FERROZINE, SPECTROPHOTOMETRY	21.7 ^L	μg/dL	37.0 - 145.0
UNSATURATED IRON BINDING CAPACITY (UIBC)	401.01 ^H	μg/dL	150.0 - 336.0
:SERUM by FERROZINE, SPECTROPHOTOMETERY			
TOTAL IRON BINDING CAPACITY (TIBC)	422.71	μg/dL	230 - 430
:SERUM by SPECTROPHOTOMETERY			
%TRANSFERRIN SATURATION: SERUM	5.13 ^L	%	15.0 - 50.0
by CALCULATED, SPECTROPHOTOMETERY (FERENE)	200.12		200.0. 250.0
TRANSFERRIN: SERUM by SPECTROPHOTOMETERY (FERENE)	300.12	mg/dL	200.0 - 350.0
INTERDETATION			

REPORTING DATE

: 06/Jul/2024 02:18PM

CLIENT CODE.

IINTERPRETATION:-			
VARIABLES	ANEMIA OF CHRONIC DISEASE	IRON DEFICIENCY ANEMIA	THALASSEMIA α/β TRAIT
SERUM IRON:	Normal to Reduced	Reduced	Normal
TOTAL IRON BINDING CAPACITY:	Decreased	Increased	Normal
% TRANSFERRIN SATURATION:	Decreased	Decreased < 12-15 %	Normal
SERUM FERRITIN:	Normal to Increased	Decreased	Normal or Increased

1. Serum iron studies is recommended for differential diagnosis of microcytic hypochromic anemia.i.e iron deficiency anemia, zinc deficiency anemia, anemia of chronic disease and thalassemia syndromes.

2. It is essential to isolate iron deficiency anemia from Beta thalassemia syndromes because during iron replacement which is therapeutic for iron deficiency anemia in source in disease.

iron deficiency anemia, is severely contra-indicated in Thalassemia. TOTAL IRON BINDING CAPACITY (TIBC):

1.It is a direct measure of protein transferrin which transports iron from the gut to storage sites in the bone marrow.

% TRANSFERRIN SATURATION:

1.Occurs in idiopathic hemochromatosis and transfusional hemosiderosis where no unsaturated iron binding capacity is available for iron mobilization. Similar condition is seen in congenital deficiency of transferrin.

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 02:35PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

ENDOCRINOLOGY

THYROID FUNCTION TEST: TOTAL

TRIIODOTHYRONINE (T3): SERUM 0.802 ng/mL 0.35 - 1.93

by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

THYROXINE (T4): SERUM 8.01 4.87 - 12.60 μgm/dL

by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

THYROID STIMULATING HORMONE (TSH): SERUM 7.588^H μIU/mL 0.35 - 5.50

by CMIA (CHEMILUMINESCENT MICROPARTICLE

IMMUNOASSAY)

3rd GENERATION, ULTRASENSITIVE

INTERPRETATION:

TSH levels are subject to circadian variation, reaching peak levels between 2-4 a.m and at a minimum between 6-10 pm. The variation is of the order of 50%. Hence time of the day has influence on the measured serum TSH concentrations. TSH stimulates the production and secretion of the metabolically active hormones, thyroxine (T4) and trilodothyronine (T3). Failure at any level of regulation of the hypothalamic-pituitary-thyroid axis will result in either underproduction (hypothyroidism) or overproduction(hyperthyroidism) of T4 and/or T3.

CLINICAL CONDITION	Т3	T4	TSH
Primary Hypothyroidism:	Reduced	Reduced	Increased (Significantly)
Subclinical Hypothyroidism:	Normal or Low Normal	Normal or Low Normal	High
Primary Hyperthyroidism:	Increased	Increased	Reduced (at times undetectable)
Subclinical Hyperthyroidism:	Normal or High Normal	Normal or High Normal	Reduced

LIMITATIONS:-

- 1. T3 and T4 circulates in reversibly bound form with Thyroid binding globulins (TBG), and to a lesser extent albumin and Thyroid binding Pre Albumin so conditions in which TBG and protein levels alter such as pregnancy, excess estrogens, androgens, anabolic steroids and glucocorticoids may falsely affect the T3 and T4 levels and may cause false thyroid values for thyroid function tests
- 2. Normal levels of T4 can also be seen in Hyperthyroid patients with :T3 Thyrotoxicosis, Decreased binding capacity due to hypoproteinemia or ingestion of certain drugs (eg: phenytoin, salicylates).
- 3. Serum T4 levies in neonates and infants are higher than values in the normal adult, due to the increased concentration of TBG in neonate serum.
- 4. TSH may be normal in central hypothyroidism, recent rapid correction of hyperthyroidism or hypothroidism, pregnancy, phenytoin therapy.

TRIIODOTHYRONINE (T3)		THYROXINE (T4)		THYROID STIMULATING HORMONE (TSH)	
Age	Refferance Range (ng/mL)	Age	Refferance Range (μg/dL)	Age	Reference Range (μΙυ/mL)
0 - 7 Days	0.20 - 2.65	0 - 7 Days	5.90 - 18.58	0 - 7 Days	2.43 - 24.3
7 Days - 3 Months	0.36 - 2.59	7 Days - 3 Months	6.39 - 17.66	7 Days - 3 Months	0.58 - 11.00
3 - 6 Months	0.51 - 2.52	3 - 6 Months	6.75 – 17.04	3 Days – 6 Months	0.70 - 8.40

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE PATIENT ID : 1540226

COLLECTED BY : REG. NO./LAB NO. : 012407060039

REFERRED BY: REGISTRATION DATE: 06/Jul/2024 01:06 PM

 BARCODE NO.
 : 01512632
 COLLECTION DATE
 : 06/Jul/2024 01:08PM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 06/Jul/2024 02:35PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name			Value	Unit		Biologic	al Reference interval
6 - 12 Months	0.74 - 2.40	6 - 12 Months	7.10 – 16.16	6 – 12 Months	0.70 - 7.00		
1 - 10 Years	0.92 - 2.28	1 - 10 Years	6.00 - 13.80	1 – 10 Years	0.60 - 5.50		
11- 19 Years	0.35 - 1.93	11 - 19 Years	4.87- 13.20	11 – 19 Years	0.50 - 5.50		
> 20 years (Adults)	0.35 - 1.93	> 20 Years (Adults)	4.87 - 12.60	> 20 Years (Adults)	0.35- 5.50		
	RECC	MMENDATIONS OF TSH LI	EVELS DURING PREGNANCY (μΙU/mL)				
	1st Trimester		0.10 – 2.50				
	2nd Trimester		0.20 - 3.00				
	3rd Trimester		0.30 - 4.10				

INCREASED TSH LEVELS:

- 1. Primary or untreated hypothyroidism may vary from 3 times to more than 100 times normal depending upon degree of hypofunction.
- 2. Hypothyroid patients receiving insufficient thyroid replacement therapy.
- 3. Hashimotos thyroiditis
- 4.DRUGS: Amphetamines, idonie containing agents & dopamine antagonist.
- 5. Neonatal period, increase in 1st 2-3 days of life due to post-natal surge

DECREASED TSH LEVELS:

- 1. Toxic multi-nodular goitre & Thyroiditis.
- 2. Over replacement of thyroid harmone in treatment of hypothyroidism.
- 3. Autonomously functioning Thyroid adenoma
- 4. Secondary pituatary or hypothalmic hypothyroidism
- 5. Acute psychiatric illness
- 6. Severe dehydration.
- 7.DRUGS: Glucocorticoids, Dopamine, Levodopa, T4 replacement therapy, Anti-thyroid drugs for thyrotoxicosis.
- 8. Pregnancy: 1st and 2nd Trimester

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUĞAM CHOPRA CONSULTANT PATHOLOGIST MBBS , MD (PATHOLOGY)

Page 16 of 20

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : 012407060039 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 06/Jul/2024 02:35PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

VITAMINS

VITAMIN D/25 HYDROXY VITAMIN D3

VITAMIN D (25-HYDROXY VITAMIN D3): SERUM 33.9 ng/mL DEFICIENCY: < 20.0

by CLIA (CHEMILUMINESCENCE IMMUNOASSAY) INSUFFICIENCY: 20.0 - 30.0

SUFFICIENCY: 30.0 - 100.0 TOXICITY: > 100.0

INTERPRETATION:

DEFICIENT:	< 20	ng/mL
INSUFFICIENT:	21 - 29	ng/mL
PREFFERED RANGE:	30 - 100	ng/mL
INTOXICATION:	> 100	ng/mL

1. Vitamin D compounds are derived from dietary ergocalciferol (from plants, Vitamin D2), or cholecalciferol (from animals, Vitamin D3), or by conversion of 7- dihydrocholecalciferol to Vitamin D3 in the skin upon Ultraviolet exposure.

2.25-OH--Vitamin D represents the main body resevoir and transport form of Vitamin D and transport form of Vitamin D, being stored in adipose tissue and tightly bound by a transport protein while in circulation.

3. Vitamin D plays a primary role in the maintenance of calcium homeostatis. It promotes calcium absorption, renal calcium absorption and phosphate reabsorption, skeletal calcium deposition, calcium mobilization, mainly regulated by parathyroid harmone (PTH).

4. Severe deficiency may lead to failure to mineralize newly formed osteoid in bone, resulting in rickets in children and osteomalacia in adults.

DECREASED:

- 1.Lack of sunshine exposure
- 2.Inadequate intake, malabsorption (celiac disease)
 3.Depressed Hepatic Vitamin D 25- hydroxylase activity
- 4. Secondary to advanced Liver disease
- 5. Osteoporosis and Secondary Hyperparathroidism (Mild to Moderate deficiency)
- 6.Enzyme Inducing drugs: anti-epileptic drugs like phenytoin, phenobarbital and carbamazepine, that increases Vitamin D metabolism.

1. Hypervitaminosis D is Rare, and is seen only after prolonged exposure to extremely high doses of Vitamin D. When it occurs, it can result in severe hypercalcemia and hyperphophatemia.

CAUTION: Replacement therapy in deficient individuals must be monitored by periodic assessment of Vitamin D levels in order to prevent hypervitaminosis D

NOTE:-Dark coloured individuals as compare to whites, is at higher risk of developing Vitamin D deficiency due to excess of melanin pigment which interefere with Vitamin D absorption.

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY : REG. NO./LAB NO. : 012407060039

 REFERRED BY
 : 06/Jul/2024 01:06 PM

 BARCODE NO.
 : 01512632
 COLLECTION DATE
 : 06/Jul/2024 01:08 PM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 06/Jul/2024 02:45 PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit Biological Reference interval

VITAMIN B12/COBALAMIN

VITAMIN B12/COBALAMIN: SERUM 489 pg/mL 190.0 - 890.0

by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

INTERPRETATION:-

HATEKI KETATION.	
INCREASED VITAMIN B12	DECREASED VITAMIN B12
1.Ingestion of Vitamin C	1.Pregnancy
2.Ingestion of Estrogen	2.DRUGS:Aspirin, Anti-convulsants, Colchicine
3.Ingestion of Vitamin A	3.Ethanol Igestion
4.Hepatocellular injury	4. Contraceptive Harmones
5.Myeloproliferative disorder	5.Haemodialysis
6.Uremia	6. Multiple Myeloma

- 1. Vitamin B12 (cobalamin) is necessary for hematopoiesis and normal neuronal function.
- 2.In humans, it is obtained only from animal proteins and requires intrinsic factor (IF) for absorption.
- 3. The body uses its vitamin B12 stores very economically, reabsorbing vitamin B12 from the ileum and returning it to the liver; very little is excreted.
- 4.Vitamin B12 deficiency may be due to lack of IF secretion by gastric mucosa (eg. gastrectomy, gastric atrophy) or intestinal malabsorption (eg, ileal resection, small intestinal diseases).
- 5.Vitamin B12 deficiency frequently causes macrocytic anemia, glossitis, peripheral neuropathy, weakness, hyperreflexia, ataxia, loss of proprioception, poor coordination, and affective behavioral changes. These manifestations may occur in any combination; many patients have the neurologic defects without macrocytic anemia.
- 6.Serum methylmalonic acid and homocysteine levels are also elevated in vitamin B12 deficiency states.
- 7.Follow-up testing for antibodies to intrinsic factor (IF) is recommended to identify this potential cause of vitamin B12 malabsorption.

 NOTE:A normal serum concentration of vitamin B12 does not rule out tissue deficiency of vitamin B12. The most sensitive test for vitamin B12 deficiency at the cellular level is the assay for MMA. If clinical symptoms suggest deficiency, measurement of MMA and homocysteine should be considered, even if serum vitamin B12 concentrations are normal.

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

Page 18 of 20

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. :012407060039

REFERRED BY **REGISTRATION DATE** : 06/Jul/2024 01:06 PM BARCODE NO. :01512632 **COLLECTION DATE** : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval** Test Name

CLINICAL PATHOLOGY URINE ROUTINE & MICROSCOPIC EXAMINATION

REPORTING DATE

: 06/Jul/2024 01:55PM

PHYSICAL EXAMINATION

CLIENT CODE.

QUANTITY RECIEVED 10 ml by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

AMBER YELLOW PALE YELLOW **COLOUR**

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

TRANSPARANCY CLEAR CLEAR

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

1.01 1.002 - 1.030 SPECIFIC GRAVITY

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

CHEMICAL EXAMINATION

REACTION **ALKALINE** by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

NEGATIVE (-ve) PROTEIN Negative

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY **SUGAR**

NEGATIVE (-ve) Negative by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

рΗ 7.5 5.0 - 7.5

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY **NEGATIVE (-ve) BILIRUBIN**

Negative by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

NITRITE Negative **NEGATIVE** (-ve)

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY. EU/dL UROBILINOGEN Normal 0.2 - 1.0

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

KETONE BODIES **NEGATIVE (-ve)** Negative by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

BLOOD NEGATIVE (-ve) Negative

by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

NEGATIVE (-ve) NEGATIVE (-ve) ASCORBIC ACID by DIP STICK/REFLECTANCE SPECTROPHOTOMETRY

MICROSCOPIC EXAMINATION

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

CLIENT CODE.

AGE/ GENDER : 38 YRS/FEMALE **PATIENT ID** : 1540226

COLLECTED BY REG. NO./LAB NO. : 012407060039

REFERRED BY REGISTRATION DATE : 06/Jul/2024 01:06 PM **COLLECTION DATE** BARCODE NO. :01512632 : 06/Jul/2024 01:08PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
RED BLOOD CELLS (RBCs) by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	NEGATIVE (-ve)	/HPF	0 - 3
PUS CELLS by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	3-4	/HPF	0 - 5
EPITHELIAL CELLS by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	0-2	/HPF	ABSENT
CRYSTALS by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	NEGATIVE (-ve)		NEGATIVE (-ve)
CASTS by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	NEGATIVE (-ve)		NEGATIVE (-ve)
BACTERIA by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	NEGATIVE (-ve)		NEGATIVE (-ve)
OTHERS by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	NEGATIVE (-ve)		NEGATIVE (-ve)
TRICHOMONAS VAGINALIS (PROTOZOA) by MICROSCOPY ON CENTRIFUGED URINARY SEDIMENT	ABSENT		ABSENT

REPORTING DATE

: 06/Jul/2024 01:55PM

*** End Of Report ***

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) MBBS , MD (PATHOLOGY)

