

(A Unit of KOS Healthcare)

Dr. Vinay Chopra MD (Pathology & Microbiology) Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE **PATIENT ID** : 1558966

COLLECTED BY : SURJESH REG. NO./LAB NO. : 012407240030

REFERRED BY **REGISTRATION DATE** : 24/Jul/2024 10:53 AM BARCODE NO. :01513731 **COLLECTION DATE** : 24/Jul/2024 11:01AM CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 24/Jul/2024 11:08AM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

HAEMATOLOGY COMPLETE BLOOD COUNT (CBC)

RED BLOOD CELLS (RBCS) COUNT AND INDICES

HAEMOGLOBIN (HB) by CALORIMETRIC	9.6 ^L	gm/dL	12.0 - 16.0
RED BLOOD CELL (RBC) COUNT by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	3.29 ^L	Millions/cmm	3.50 - 5.00
PACKED CELL VOLUME (PCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	29.1 ^L	%	37.0 - 50.0
MEAN CORPUSCULAR VOLUME (MCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	88.5	fL	80.0 - 100.0
MEAN CORPUSCULAR HAEMOGLOBIN (MCH) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	29	pg	27.0 - 34.0
MEAN CORPUSCULAR HEMOGLOBIN CONC. (MCHC) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	32.8	g/dL	32.0 - 36.0
RED CELL DISTRIBUTION WIDTH (RDW-CV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	13.4	%	11.00 - 16.00
RED CELL DISTRIBUTION WIDTH (RDW-SD) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	44	fL	35.0 - 56.0
MENTZERS INDEX by CALCULATED	26.9	RATIO	BETA THALASSEMIA TRAIT: < 13.0 IRON DEFICIENCY ANEMIA: >13.0
GREEN & KING INDEX by CALCULATED	35.82	RATIO	BETA THALASSEMIA TRAIT: < = 65.0
WHITE BLOOD CELLS (WBCS)			IRON DEFICIENCY ANEMIA: > 65.0
WITH L DECOLD CELES (WDC3)			

MHILE REGOD CETES (MRC2)

TOTAL LEUCOCYTE COUNT (TLC)	7030	/cmm	4000 - 11000
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
NUCLEATED RED BLOOD CELLS (nRBCS)	NIL		0.00 - 20.00
by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER &			
MICROSCOPY			
NUCLEATED RED BLOOD CELLS (nRBCS) %	NIL	%	< 10 %
by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER &			

DIFFERENTIAL LEUCOCYTE COUNT (DLC)

MICROSCOPY

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana KOS Molecular Lab: IInd Floor, Parry Hotel, Staff Road, Opp. GPO, Ambala Cantt -133 001, Haryana 0171-2643898, +91 99910 43898 | care@koshealthcare.com | www.koshealthcare.com

(A Unit of KOS Healthcare)

Dr. Vinay Chopra
MD (Pathology & Microbiology)
Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE PATIENT ID : 1558966

COLLECTED BY: SURJESH REG. NO./LAB NO. : 012407240030

 REFERRED BY
 : 24/Jul/2024 10:53 AM

 BARCODE NO.
 : 01513731
 COLLECTION DATE
 : 24/Jul/2024 11:01AM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 24/Jul/2024 11:08AM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
NEUTROPHILS	77 ^H	%	50 - 70
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY LYMPHOCYTES by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	15 ^L	%	20 - 40
EOSINOPHILS by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	2	%	1 - 6
MONOCYTES by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	6	%	2 - 12
BASOPHILS by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY ABSOLUTE LEUKOCYTES (WBC) COUNT	0	%	0 - 1
ABSOLUTE NEUTROPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	5413	/cmm	2000 - 7500
ABSOLUTE LYMPHOCYTE COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	1054	/cmm	800 - 4900
ABSOLUTE EOSINOPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	141	/cmm	40 - 440
ABSOLUTE MONOCYTE COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	422	/cmm	80 - 880
ABSOLUTE BASOPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	/cmm	0 - 110
PLATELETS AND OTHER PLATELET PREDICTIVE MARKE	RS.		
PLATELET COUNT (PLT) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	226000	/cmm	150000 - 450000
PLATELETCRIT (PCT) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	0.24	%	0.10 - 0.36
MEAN PLATELET VOLUME (MPV) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	11	fL	6.50 - 12.0
PLATELET LARGE CELL COUNT (P-LCC) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	68000	/cmm	30000 - 90000
PLATELET LARGE CELL RATIO (P-LCR) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	30	%	11.0 - 45.0
PLATELET DISTRIBUTION WIDTH (PDW) by hydro dynamic focusing, electrical impedence NOTE: TEST CONDUCTED ON EDTA WHOLE BLOOD	16.4	%	15.0 - 17.0

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA
CONSULTANT PATHOLOGIST
MBBS , MD (PATHOLOGY)

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana KOS Molecular Lab: Ilnd Floor, Parry Hotel, Staff Road, Opp. GPO, Ambala Cantt -133 001, Haryana

Dr. Vinay Chopra MD (Pathology & Microbiology) Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

mg/dL

8.50 - 10.60

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE **PATIENT ID** : 1558966

COLLECTED BY : SURJESH : 012407240030 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 24/Jul/2024 10:53 AM BARCODE NO. :01513731 **COLLECTION DATE** : 24/Jul/2024 11:01AM CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 24/Jul/2024 12:03PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

CLINICAL CHEMISTRY/BIOCHEMISTRY CALCIUM

CALCIUM: SERUM 7.74^L

by ARSENAZO III, SPECTROPHOTOMETRY

INTERPRETATION:-

- 1. Serum calcium (total) estimation is used for the diagnosis and monitoring of a wide range of disorders including diseases of bone, kidney, parathyroid gland, or gastrointestinal tract.
- 2. Calcium levels may also reflect abnormal vitamin D or protein levels.
- 3. The calcium content of an adult is somewhat over 1 kg (about 2% of the body weight). Of this, 99% is present as calcium hydroxyapatite in bones and <1% is present in the extra-osseous intracellular space or extracellular space (ECS).
- 4. In serum, calcium is bound to a considerable extent to proteins (approximately 40%), 10% is in the form of inorganic complexes, and 50% is present as free or ionized calcium.

NOTE:-Calcium ions affect the contractility of the heart and the skeletal musculature, and are essential for the function of the nervous system. In addition, calcium ions play an important role in blood clotting and bone mineralization.

HYPOCALCEMIA (LOW CALCIUM LEVELS) CAUSES:-

- 1.Due to the absence or impaired function of the parathyroid glands or impaired vitamin-D synthesis.
- 2. Chronic renal failure is also frequently associated with hypocalcemia due to decreased vitamin-D synthesis as well as hyperphosphatemia and skeletal resistance to the action of parathyroid hormone (PTH).
- 3.NOTE:- A characteristic symptom of hypocalcemia is latent or manifest tetany and osteomalacia.

HYPERCALCEMIA (INCREASE CALCIUM LEVELS) CAUSES:-

- 1.Increased mobilization of calcium from the skeletal system or increased intestinal absorption.
- 2. Primary hyperparathyroidism (pHPT)
- 3. Bone metastasis of carcinoma of the breast, prostate, thyroid gland, or lung

NOTE:-Severe hypercalcemia may result in cardiac arrhythmia.

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST

(A Unit of KOS Healthcare)

Dr. Vinay Chopra
MD (Pathology & Microbiology)
Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE PATIENT ID : 1558966

COLLECTED BY: SURJESH REG. NO./LAB NO. : 012407240030

 REFERRED BY
 : 24/Jul/2024 10:53 AM

 BARCODE NO.
 : 01513731
 COLLECTION DATE
 : 24/Jul/2024 11:01AM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 24/Jul/2024 01:01PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name	Value	Unit	Biological Reference interval
	IRON PROFILE		
IRON: SERUM by FERROZINE, SPECTROPHOTOMETRY	53.12	μg/dL	50.0 - 170.0
UNSATURATED IRON BINDING CAPACITY (UIBC) :SERUM by FERROZINE, SPECTROPHOTOMETERY	305.28	μg/dL	150.0 - 336.0
TOTAL IRON BINDING CAPACITY (TIBC) :SERUM by SPECTROPHOTOMETERY	358.4	μg/dL	230 - 430
%TRANSFERRIN SATURATION: SERUM by CALCULATED, SPECTROPHOTOMETERY (FERENE)	14.82 ^L	%	15.0 - 50.0
TRANSFERRIN: SERUM by SPECTROPHOTOMETERY (FERENE)	254.46	mg/dL	200.0 - 350.0

INTERPRETATION:-

MILIO NE IMINO.			
VARIABLES	ANEMIA OF CHRONIC DISEASE	IRON DEFICIENCY ANEMIA	THALASSEMIA α/β TRAIT
SERUM IRON:	Normal to Reduced	Reduced	Normal
TOTAL IRON BINDING CAPACITY:	Decreased	Increased	Normal
% TRANSFERRIN SATURATION:	Decreased	Decreased < 12-15 %	Normal
SERUM FERRITIN:	Normal to Increased	Decreased	Normal or Increased

IRON:

- 1. Serum iron studies is recommended for differential diagnosis of microcytic hypochromic anemia.i.e iron deficiency anemia, zinc deficiency
- anemia, anemia of chronic disease and thalassemia syndromes.

 2. It is essential to isolate iron deficiency anemia from Beta thalassemia syndromes because during iron replacement which is therapeutic for iron deficiency anemia, is severely contra-indicated in Thalassemia.

 TOTAL IRON BINDING CAPACITY (TIBC):
- 1.It is a direct measure of protein transferrin which transports iron from the gut to storage sites in the bone marrow.

% TRANSFERRIN SATURATION:

1.Occurs in idiopathic hemochromatosis and transfusional hemosiderosis where no unsaturated iron binding capacity is available for iron mobilization. Similar condition is seen in congenital deficiency of transferrin.

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST MBBS , MD (PATHOLOGY)

(A Unit of KOS Healthcare)

Dr. Vinay Chopra MD (Pathology & Microbiology) Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE **PATIENT ID** : 1558966

COLLECTED BY : 012407240030 : SURJESH REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 24/Jul/2024 10:53 AM BARCODE NO. :01513731 **COLLECTION DATE** : 24/Jul/2024 11:01AM CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 24/Jul/2024 12:03PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit **Biological Reference interval**

VITAMINS

VITAMIN D/25 HYDROXY VITAMIN D3

VITAMIN D (25-HYDROXY VITAMIN D3): SERUM by CLIA (CHEMILUMINESCENCE IMMUNOASSAY)

19.5^L ng/mL

DEFICIENCY: < 20.0

INSUFFICIENCY: 20.0 - 30.0 SUFFICIENCY: 30.0 - 100.0

TOXICITY: > 100.0

INTERPRETATION:

DEFICIENT:	< 20	ng/mL
INSUFFICIENT:	21 - 29	ng/mL
PREFFERED RANGE:	30 - 100	ng/mL
INTOXICATION:	> 100	ng/mL

1. Vitamin D compounds are derived from dietary ergocalciferol (from plants, Vitamin D2), or cholecalciferol (from animals, Vitamin D3), or by conversion of 7- dihydrocholecalciferol to Vitamin D3 in the skin upon Ultraviolet exposure.

2.25-OH--Vitamin D represents the main body resevoir and transport form of Vitamin D and transport form of Vitamin D, being stored in adipose tissue and tightly bound by a transport protein while in circulation.

3. Vitamin D plays a primary role in the maintenance of calcium homeostatis. It promotes calcium absorption, renal calcium absorption and phosphate reabsorption, skeletal calcium deposition, calcium mobilization, mainly regulated by parathyroid harmone (PTH).

4. Severe deficiency may lead to failure to mineralize newly formed osteoid in bone, resulting in rickets in children and osteomalacia in adults.

DECREASED:

- 1.Lack of sunshine exposure.
- 2.Inadequate intake, malabsorption (celiac disease)
 3.Depressed Hepatic Vitamin D 25- hydroxylase activity
- 4. Secondary to advanced Liver disease
- 5. Osteoporosis and Secondary Hyperparathroidism (Mild to Moderate deficiency)
- 6.Enzyme Inducing drugs: anti-epileptic drugs like phenytoin, phenobarbital and carbamazepine, that increases Vitamin D metabolism.

1. Hypervitaminosis D is Rare, and is seen only after prolonged exposure to extremely high doses of Vitamin D. When it occurs, it can result in severe hypercalcemia and hyperphophatemia.

CAUTION: Replacement therapy in deficient individuals must be monitored by periodic assessment of Vitamin D levels in order to prevent hypervitaminosis D

NOTE:-Dark coloured individuals as compare to whites, is at higher risk of developing Vitamin D deficiency due to excess of melanin pigment which interefere with Vitamin D absorption.

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY)

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana

(A Unit of KOS Healthcare)

Dr. Vinay Chopra
MD (Pathology & Microbiology)
Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Mrs. ADITI

AGE/ GENDER : 32 YRS/FEMALE PATIENT ID : 1558966

COLLECTED BY: SURJESH REG. NO./LAB NO. : 012407240030

 REFERRED BY
 : 24/Jul/2024 10:53 AM

 BARCODE NO.
 : 01513731
 COLLECTION DATE
 : 24/Jul/2024 11:01AM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 24/Jul/2024 12:53PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit Biological Reference interval

VITAMIN B12/COBALAMIN

VITAMIN B12/COBALAMIN: SERUM 205 pg/mL 190.0 - 890.0

by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

INTERPRETATION:-

HATERI RETATION.	
INCREASED VITAMIN B12	DECREASED VITAMIN B12
1.Ingestion of Vitamin C	1.Pregnancy
2.Ingestion of Estrogen	2.DRUGS:Aspirin, Anti-convulsants, Colchicine
3.Ingestion of Vitamin A	3.Ethanol Igestion
4.Hepatocellular injury	4. Contraceptive Harmones
5.Myeloproliferative disorder	5.Haemodialysis
6.Uremia	6. Multiple Myeloma

- 1. Vitamin B12 (cobalamin) is necessary for hematopoiesis and normal neuronal function.
- 2.In humans, it is obtained only from animal proteins and requires intrinsic factor (IF) for absorption.
- 3. The body uses its vitamin B12 stores very economically, reabsorbing vitamin B12 from the ileum and returning it to the liver; very little is excreted.
- 4.Vitamin B12 deficiency may be due to lack of IF secretion by gastric mucosa (eg. gastrectomy, gastric atrophy) or intestinal malabsorption (eg, ileal resection, small intestinal diseases).
- 5.Vitamin B12 deficiency frequently causes macrocytic anemia, glossitis, peripheral neuropathy, weakness, hyperreflexia, ataxia, loss of proprioception, poor coordination, and affective behavioral changes. These manifestations may occur in any combination; many patients have the neurologic defects without macrocytic anemia.
- 6.Serum methylmalonic acid and homocysteine levels are also elevated in vitamin B12 deficiency states.
- 7. Follow-up testing for antibodies to intrinsic factor (IF) is recommended to identify this potential cause of vitamin B12 malabsorption.

 NOTE:A normal serum concentration of vitamin B12 does not rule out tissue deficiency of vitamin B12. The most sensitive test for vitamin B12 deficiency at the cellular level is the assay for MMA. If clinical symptoms suggest deficiency, measurement of MMA and homocysteine should be considered, even if serum vitamin B12 concentrations are normal.

*** End Of Report ***

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST MBBS , MD (PATHOLOGY)

