

(A Unit of KOS Healthcare)

Dr. Vinay Chopra MD (Pathology & Microbiology) Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Dr. AKRITI

AGE/ GENDER : 26 YRS/FEMALE **PATIENT ID** : 1776685

COLLECTED BY REG. NO./LAB NO. :012503030046

REFERRED BY **REGISTRATION DATE** : 03/Mar/2025 02:25 PM BARCODE NO. :01526398 **COLLECTION DATE** : 03/Mar/2025 02:29PM CLIENT CODE. : KOS DIAGNOSTIC LAB REPORTING DATE : 03/Mar/2025 03:52PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Test Name Biological Reference interval**

CLINICAL CHEMISTRY/BIOCHEMISTRY **FERRITIN**

FERRITIN: SERUM 67.7 4.63 - 204.0ng/mL

by CLIA (CHEMILUMINESCENCE IMMUNOASSAY)

Serum ferritin appears to be in equilibrium with tissue ferritin and is a good indicator of storage iron in normal subjects and in most disorders. In patients with some hepatocellular diseases, malignancies and inflammatory diseases, serum ferritin is a disproportionately high estimate of storage iron because serum ferritin is an acute phase reactant. In such disorders iron deficiency anemia may exist with a normal serum ferritin concentration. In the presence of inflammation, persons with low serum ferritin are likely to respond to iron therapy.

DECREASED:

- 1. Iron depletion appears to be the only condition associated with reduced serum ferritin concentrations.
- 2. Hypothyroidism.
- 3. Vitamin-C deficiency

INCREASED FERRITIN DUE TO IRON OVERLOAD (PRIMARY):

- 1. Hemochromatosis or hemosiderosis.
- Wilson Disease

INCREASED FERRITIN DUE TO IRON OVERLOAD (SECONDARY):

- 1. Transfusion overload
- 2. Excess dietary Iron
- 3. Porphyria Cutanea tada
- 4. Ineffective erythropoiesis

- INCREASED FERRITIN WITHOUT IRON OVERLOAD:

 1. Liver disorders (NASH) or viral hepatitis (B/C).

 2. Inflammatory conditions (Ferritin is a acute phase reactant) both acute and chronic.
- 3. Leukaemia, hodgkin's disease.
- 4. Alcohol excess.
- 5. Other malignancies in which increases probably reflect the escape of ferritin from damaged liver cells, impaired clearance from the plasma, synthesis of ferritin by tumour cells.
- 6. Ferritin levels below 10 ng/ml have been reported as indicative of iron deficiency anemia.

NOTE:

1. As Ferritin is an acute phase reactant, it is often raised in both acute and chronic inflammatory condition of the body such as infections leading to false positive results. It can thererfore mask a diagnostically low result. In such Cases serum ferritin levels should always be correlated with C-Reactive proteins to rule out any inflammatory conditions.

2. Patients with iron deficiency anaemia may occasionally have elevated or normal ferritin levels. This is usually seen in patients already receiving iron therapy or in patients with concomitant hepatocellular injury.

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana

(A Unit of KOS Healthcare)

Dr. Vinay Chopra MD (Pathology & Microbiology) Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

: 03/Mar/2025 03:52PM

NAME : Dr. AKRITI

AGE/ GENDER : 26 YRS/FEMALE **PATIENT ID** : 1776685

COLLECTED BY : 012503030046 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 03/Mar/2025 02:25 PM BARCODE NO. :01526398 **COLLECTION DATE** : 03/Mar/2025 02:29PM

: KOS DIAGNOSTIC LAB **CLIENT ADDRESS** : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Value Unit **Biological Reference interval Test Name**

REPORTING DATE

ENDOCRINOLOGY

THYROID FUNCTION TEST: TOTAL

TRIIODOTHYRONINE (T3): SERUM 0.96 ng/mL 0.35 - 1.93by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

THYROXINE (T4): SERUM μgm/dL 8.03 4.87 - 12.60by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

THYROID STIMULATING HORMONE (TSH): SERUM μIU/mL 0.35 - 5.501.53 by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

3rd GENERATION, ULTRASENSITIVE

INTERPRETATION:

CLIENT CODE.

TSH levels are subject to circadian variation, reaching peak levels between 2-4 a.m and at a minimum between 6-10 pm. The variation is of the order of 50%. Hence time of the day has influence on the measured serum TSH concentrations. TSH stimulates the production and secretion of the metabolically active hormones, thyroxine (T4) and triiodothyronine (T3). Failure at any level of regulation of the hypothalamic-pituitary-thyroid axis will result in either underproduction (hypothyroidism) or overproduction(hyperthyroidism) of T4 and/or T3.

CLINICAL CONDITION	Т3	T4	TSH
Primary Hypothyroidism:	Reduced	Reduced	Increased (Significantly)
Subclinical Hypothyroidism:	Normal or Low Normal	Normal or Low Normal	High
Primary Hyperthyroidism:	Increased	Increased	Reduced (at times undetectable)
Subclinical Hyperthyroidism:	Normal or High Normal	Normal or High Normal	Reduced

LIMITATIONS:-

- 1. T3 and T4 circulates in reversibly bound form with Thyroid binding globulins (TBG), and to a lesser extent albumin and Thyroid binding Pre Albumin so conditions in which TBG and protein levels alter such as pregnancy, excess estrogens, androgens, anabolic steroids and glucocorticoids may falsely affect the T3 and T4 levels and may cause false thyroid values for thyroid function tests
- 2. Normal levels of T4 can also be seen in Hyperthyroid patients with :T3 Thyrotoxicosis, Decreased binding capacity due to hypoproteinemia or ingestion of certain drugs
- 3. Serum T4 levels in neonates and infants are higher than values in the normal adult, due to the increased concentration of TBG in neonate serum.
- 4. TSH may be normal in central hypothyroidism, recent rapid correction of hyperthyroidism or hypothyroidism, pregnancy, phenytoin therapy.

TRIIODOTH	YRONINE (T3)	THYROX	INE (T4)	THYROID STIMUI	LATING HORMONE (TSH)
Age	Refferance Range (ng/mL)	Age	Refferance Range (µg/dL)	Age	Reference Range (μIU/mL)
0 - 7 Days	0.20 - 2.65	0 - 7 Days	5.90 - 18.58	0 - 7 Days	2.43 - 24.3
7 Days - 3 Months	0.36 - 2.59	7 Days - 3 Months	6.39 - 17.66	7 Days - 3 Months	0.58 - 11.00
3 - 6 Months	0.51 - 2.52	3 - 6 Months	6.75 – 17.04	3 Days – 6 Months	0.70 - 8.40
6 - 12 Months	0.74 - 2.40	6 - 12 Months	7.10 - 16.16	6 – 12 Months	0.70 - 7.00

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY)

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana

(A Unit of KOS Healthcare)

Dr. Vinay Chopra
MD (Pathology & Microbiology)
Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

NAME : Dr. AKRITI

AGE/ GENDER : 26 YRS/FEMALE PATIENT ID : 1776685

COLLECTED BY : REG. NO./LAB NO. : 012503030046

 REFERRED BY
 : 03/Mar/2025 02:25 PM

 BARCODE NO.
 : 01526398
 COLLECTION DATE
 : 03/Mar/2025 02:29 PM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 03/Mar/2025 03:52 PM

CLIENT ADDRESS: 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name			Value	Unit		Biological Reference inter
1 - 10 Years	0.92 - 2.28	1 - 10 Years	6.00 - 13.80	1 – 10 Years	0.60 - 5.50	
11- 19 Years	0.35 - 1.93	11 - 19 Years	4.87- 13.20	11 – 19 Years	0.50 - 5.50	
> 20 years (Adults)	0.35 - 1.93	> 20 Years (Adults)	4.87 - 12.60	> 20 Years (Adults)	0.35- 5.50	
	RECOM	MENDATIONS OF TSH LI	EVELS DURING PRE	GNANCY (µIU/mL)		
	1st Trimester			0.10 - 2.50		
	2nd Trimester			0.20 - 3.00		
	3rd Trimester			0.30 - 4.10		

INCREASED TSH LEVELS:

- 1. Primary or untreated hypothyroidism may vary from 3 times to more than 100 times normal depending upon degree of hypofunction.
- 2. Hypothyroid patients receiving insufficient thyroid replacement therapy.
- 3. Hashimotos thyroiditis
- 4.DRUGS: Amphetamines, iodine containing agents & dopamine antagonist.
- 5. Neonatal period, increase in 1st 2-3 days of life due to post-natal surge

DECREASED TSH LEVELS:

- 1.Toxic multi-nodular goiter & Thyroiditis.
- 2. Over replacement of thyroid hormone in treatment of hypothyroidism.
- 3. Autonomously functioning Thyroid adenoma
- 4. Secondary pituitary or hypothalamic hypothyroidism
- 5. Acute psychiatric illness
- 6. Severe dehydration.
- 7.DRUGS: Glucocorticoids, Dopamine, Levodopa, T4 replacement therapy, Anti-thyroid drugs for thyrotoxicosis.

8. Pregnancy: 1st and 2nd Trimester

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA
CONSULTANT PATHOLOGIST
MBBS , MD (PATHOLOGY)

KOS Central Lab: 6349/1, Nicholson Road, Ambala Cantt -133 001, Haryana

val

(A Unit of KOS Healthcare)

Dr. Vinay Chopra
MD (Pathology & Microbiology)
Chairman & Consultant Pathologist

Dr. Yugam Chopra MD (Pathology) CEO & Consultant Pathologist

190.0 - 890.0

NAME : Dr. AKRITI

AGE/ GENDER : 26 YRS/FEMALE PATIENT ID : 1776685

COLLECTED BY : REG. NO./LAB NO. : 012503030046

 REFERRED BY
 : 03/Mar/2025 02:25 PM

 BARCODE NO.
 : 01526398
 COLLECTION DATE
 : 03/Mar/2025 02:29 PM

 CLIENT CODE.
 : KOS DIAGNOSTIC LAB
 REPORTING DATE
 : 03/Mar/2025 04:01 PM

CLIENT ADDRESS : 6349/1, NICHOLSON ROAD, AMBALA CANTT

Test Name Value Unit Biological Reference interval

VITAMINS VITAMIN B12/COBALAMIN

VITAMIN B12/COBALAMIN: SERUM 117^L pg/mL

by CMIA (CHEMILUMINESCENT MICROPARTICLE IMMUNOASSAY)

INTERPRETATION:-

INCREASED VITAMIN B12	DECREASED VITAMIN B12		
1.Ingestion of Vitamin C	1.Pregnancy		
2.Ingestion of Estrogen	2.DRUGS:Aspirin, Anti-convulsants, Colchicine		
3.Ingestion of Vitamin A	3.Ethanol Igestion		
4.Hepatocellular injury	4. Contraceptive Harmones		
5.Myeloproliferative disorder	5.Haemodialysis		
6.Uremia	6. Multiple Myeloma		

- 1. Vitamin B12 (cobalamin) is necessary for hematopoiesis and normal neuronal function.
- 2.In humans, it is obtained only from animal proteins and requires intrinsic factor (IF) for absorption.
- 3. The body uses its vitamin B12 stores very economically, reabsorbing vitamin B12 from the ileum and returning it to the liver; very little is excreted.
- 4.Vitamin B12 deficiency may be due to lack of IF secretion by gastric mucosa (eg. gastrectomy, gastric atrophy) or intestinal malabsorption (eg, ileal resection, small intestinal diseases).
- 5.Vitamin B12 deficiency frequently causes macrocytic anemia, glossitis, peripheral neuropathy, weakness, hyperreflexia, ataxia, loss of proprioception, poor coordination, and affective behavioral changes. These manifestations may occur in any combination; many patients have the neurologic defects without macrocytic anemia.
- 6. Serum methylmalonic acid and homocysteine levels are also elevated in vitamin B12 deficiency states.
- 7.Follow-up testing for antibodies to intrinsic factor (IF) is recommended to identify this potential cause of vitamin B12 malabsorption.

 NOTE:A normal serum concentration of vitamin B12 does not rule out tissue deficiency of vitamin B12. The most sensitive test for vitamin B12 deficiency at the cellular level is the assay for MMA. If clinical symptoms suggest deficiency, measurement of MMA and homocysteine should be considered, even if serum vitamin B12 concentrations are normal.

*** End Of Report ***

DR.VINAY CHOPRA
CONSULTANT PATHOLOGIST
MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA
CONSULTANT PATHOLOGIST
MBBS , MD (PATHOLOGY)

