

A PIONEER DIAGNOSTIC CENTRE

■ 0171-2532620, 8222896961 ■ pkrjainhealthcare@gmail.com

NAME : Mrs. PARAMJEET KAUR KAUR

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** :1772229

COLLECTED BY REG. NO./LAB NO. : 122502270015

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 02:43PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Value Unit **Biological Reference interval Test Name**

HAEMATOLOGY COMPLETE BLOOD COUNT (CBC)

RED BLOOD CELLS (RBCS) COUNT AND INDICES

HAEMOGLOBIN (HB) by CALORIMETRIC	12	gm/dL	12.0 - 16.0
RED BLOOD CELL (RBC) COUNT by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	4.71	Millions/cmm	3.50 - 5.00
PACKED CELL VOLUME (PCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	35.9 ^L	%	37.0 - 50.0
MEAN CORPUSCULAR VOLUME (MCV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	76.3 ^L	fL	80.0 - 100.0
MEAN CORPUSCULAR HAEMOGLOBIN (MCH) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	25.4 ^L	pg	27.0 - 34.0
MEAN CORPUSCULAR HEMOGLOBIN CONC. (MCHC) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	33.4	g/dL	32.0 - 36.0
RED CELL DISTRIBUTION WIDTH (RDW-CV) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	13.9	%	11.00 - 16.00
RED CELL DISTRIBUTION WIDTH (RDW-SD) by CALCULATED BY AUTOMATED HEMATOLOGY ANALYZER	40.3	fL	35.0 - 56.0
MENTZERS INDEX by CALCULATED	16.2	RATIO	BETA THALASSEMIA TRAIT: < 13.0 IRON DEFICIENCY ANEMIA: >13.0
GREEN & KING INDEX by CALCULATED	22.45	RATIO	BETA THALASSEMIA TRAIT:<= 65.0 IRON DEFICIENCY ANEMIA: > 65.0
WHITE BLOOD CELLS (WBCS)			
TOTAL LEUCOCYTE COUNT (TLC) by Flow cytometry by sf cube & microscopy DIFFERENTIAL LEUCOCYTE COUNT (DLC)	10400	/cmm	4000 - 11000
NEUTROPHILS by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	74 ^H	%	50 - 70
LYMPHOCYTES	23	%	20 - 40

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

A PIONEER DIAGNOSTIC CENTRE

■ 0171-2532620, 8222896961 ■ pkrjainhealthcare@gmail.com

: Mrs. PARAMJEET KAUR KAUR NAME

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** :1772229

COLLECTED BY REG. NO./LAB NO. : 122502270015

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM

CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 02:43PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Test Name	Value	Unit	Biological Reference interval
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
EOSINOPHILS by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	$\mathbf{0^L}$	%	1 - 6
MONOCYTES	3	%	2 - 12
by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY			
BASOPHILS by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	%	0 - 1
ABSOLUTE LEUKOCYTES (WBC) COUNT			
ABSOLUTE NEUTROPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	7696 ^H	/cmm	2000 - 7500
ABSOLUTE LYMPHOCYTE COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	2392 ^L	/cmm	800 - 4900
ABSOLUTE EOSINOPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	$\mathbf{0_{\Gamma}}$	/cmm	40 - 440
ABSOLUTE MONOCYTE COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	312	/cmm	80 - 880
ABSOLUTE BASOPHIL COUNT by FLOW CYTOMETRY BY SF CUBE & MICROSCOPY	0	/cmm	0 - 110
PLATELETS AND OTHER PLATELET PREDICTIVE	MARKERS.		
PLATELET COUNT (PLT) by hydro dynamic focusing, electrical impedence	251000	/cmm	150000 - 450000
PLATELETCRIT (PCT) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	0.24	%	0.10 - 0.36
MEAN PLATELET VOLUME (MPV) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	10	fL	6.50 - 12.0
PLATELET LARGE CELL COUNT (P-LCC) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	63000	/cmm	30000 - 90000
PLATELET LARGE CELL RATIO (P-LCR) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE	25.2	%	11.0 - 45.0
PLATELET DISTRIBUTION WIDTH (PDW) by HYDRO DYNAMIC FOCUSING, ELECTRICAL IMPEDENCE NOTE: TEST CONDUCTED ON EDTA WHOLE BLOOD	15.7	%	15.0 - 17.0

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY) MBBS, MD (PATHOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST

A PIONEER DIAGNOSTIC CENTRE

NAME : Mrs. PARAMJEET KAUR KAUR

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** : 1772229

COLLECTED BY REG. NO./LAB NO. : 122502270015

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 02:43PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Value Unit **Test Name Biological Reference interval**

ERYTHROCYTE SEDIMENTATION RATE (ESR)

ERYTHROCYTE SEDIMENTATION RATE (ESR)

mm/1st hr

0 - 20

by RED CELL AGGREGATION BY CAPILLARY PHOTOMETRY

INTERPRETATION:

- 1. ESR is a non-specific test because an elevated result often indicates the presence of inflammation associated with infection, cancer and auto-immune disease, but does not tell the health practitioner exactly where the inflammation is in the body or what is causing it.
- 2. An ESR can be affected by other conditions besides inflammation. For this reason, the ESR is typically used in conjunction with other test such as C-reactive protein
- 3. This test may also be used to monitor disease activity and response to therapy in both of the above diseases as well as some others, such as systemic lupus erythematosus

CONDITION WITH LOW ESR

A low ESR can be seen with conditions that inhibit the normal sedimentation of red blood cells, such as a high red blood cell count (polycythaemia), significantly high white blood cell count (leucocytosis), and some protein abnormalities. Some changes in red cell shape (such as sickle cells in sickle cell anaemia) also lower the ESR.

NOTE:

- 1. ESR and C reactive protein (C-RP) are both markers of inflammation.
- 2. Generally, ESR does not change as rapidly as does CRP, either at the start of inflammation or as it resolves.
 3. CRP is not affected by as many other factors as is ESR, making it a better marker of inflammation.
 4. If the ESR is elevated, it is typically a result of two types of proteins, globulins or fibringen.
 5. Women tend to average mathyldone and entraceptives professional processing mathyldone and with the opposition of the oppositio

- 6. Drugs such as dextran, methyldopa, oral contraceptives, penicillamine procainamide, theophylline, and vitamin A can increase ESR, while aspirin, cortisone, and quinine may decrease it

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

A PIONEER DIAGNOSTIC CENTRE

■ 0171-2532620, 8222896961 ■ pkrjainhealthcare@gmail.com

NAME : Mrs. PARAMJEET KAUR KAUR

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** : 1772229

COLLECTED BY REG. NO./LAB NO. : 122502270015

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 02:43PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Test Name Value Unit **Biological Reference interval**

CLINICAL CHEMISTRY/BIOCHEMISTRY

LIPID PROFILE: BASIC

CHOLESTEROL TOTAL: SERUM by CHOLESTEROL OXIDASE PAP	152.91	mg/dL	OPTIMAL: < 200.0 BORDERLINE HIGH: 200.0 - 239.0 HIGH CHOLESTEROL: > OR = 240.0
TRIGLYCERIDES: SERUM by GLYCEROL PHOSPHATE OXIDASE (ENZYMATIC)	135.66	mg/dL	OPTIMAL: < 150.0 BORDERLINE HIGH: 150.0 - 199.0 HIGH: 200.0 - 499.0 VERY HIGH: > OR = 500.0
HDL CHOLESTEROL (DIRECT): SERUM by SELECTIVE INHIBITION	48.25	mg/dL	LOW HDL: < 30.0 BORDERLINE HIGH HDL: 30.0 - 60.0 HIGH HDL: > OR = 60.0
LDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	77.53	mg/dL	OPTIMAL: < 100.0 ABOVE OPTIMAL: 100.0 - 129.0 BORDERLINE HIGH: 130.0 - 159.0 HIGH: 160.0 - 189.0 VERY HIGH: > OR = 190.0
NON HDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	104.66	mg/dL	OPTIMAL: < 130.0 ABOVE OPTIMAL: 130.0 - 159.0 BORDERLINE HIGH: 160.0 - 189.0 HIGH: 190.0 - 219.0 VERY HIGH: > OR = 220.0
VLDL CHOLESTEROL: SERUM by CALCULATED, SPECTROPHOTOMETRY	27.13	mg/dL	0.00 - 45.00
TOTAL LIPIDS: SERUM by CALCULATED, SPECTROPHOTOMETRY	441.48	mg/dL	350.00 - 700.00
CHOLESTEROL/HDL RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	3.17	RATIO	LOW RISK: 3.30 - 4.40 AVERAGE RISK: 4.50 - 7.0

CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

A PIONEER DIAGNOSTIC CENTRE

NAME : Mrs. PARAMJEET KAUR KAUR

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** :1772229

COLLECTED BY REG. NO./LAB NO. : 122502270015

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 02:43PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Test Name	Value	Unit	Biological Reference interval
			MODERATE RISK: 7.10 - 11.0 HIGH RISK: > 11.0
LDL/HDL RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	1.61	RATIO	LOW RISK: 0.50 - 3.0 MODERATE RISK: 3.10 - 6.0 HIGH RISK: > 6.0
TRIGLYCERIDES/HDL RATIO: SERUM by CALCULATED, SPECTROPHOTOMETRY	2.81 ^L	RATIO	3.00 - 5.00

INTERPRETATION:

1. Measurements in the same patient can show physiological analytical variations. Three serial samples 1 week apart are recommended for

Total Cholesterol, Triglycerides, HDL & LDL Cholesterol.

2. As per NLA-2014 guidelines, all adults above the age of 20 years should be screened for lipid status. Selective screening of children above the age of 2 years with a family history of premature cardiovascular disease or those with at least one parent with high total cholesterol is recommended.

3. Low HDL levels are associated with increased risk for Atherosclerotic Cardiovascular disease (ASCVD) due to insufficient HDL being available

to participate in reverse cholesterol transport, the process by which cholesterol is eliminated from peripheral tissues.

4. NLA-2014 identifies Non HDL Cholesterol (an indicator of all atherogeniclipoproteins such as LDL, VLDL, IDL, Lpa, Chylomicron remnants) along with LDL-cholesterol as co- primary target for cholesterol lowering therapy. Note that major risk factors can modify treatment goals for LDL &Non

5. Additional testing for Apolipoprotein B, hsCRP,Lp(a) & LP-PLA2 should be considered among patients with moderate risk for ASCVD for risk refinement

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

DR.YUGAM CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY)

440 Dated 17.5.2012 u/s 80 G OF INCOME TAX ACT. PAN NO. AAAAP1600. REPORT ATTRACTS THE CONDITIONS PRINTED OVERLEAF (P.T.O.)

A PIONEER DIAGNOSTIC CENTRE

NAME : Mrs. PARAMJEET KAUR KAUR

AGE/ GENDER : 31 YRS/FEMALE **PATIENT ID** : 1772229

COLLECTED BY : 122502270015 REG. NO./LAB NO.

REFERRED BY **REGISTRATION DATE** : 27/Feb/2025 01:20 PM BARCODE NO. : 12507270 **COLLECTION DATE** : 27/Feb/2025 01:27PM CLIENT CODE. : P.K.R JAIN HEALTHCARE INSTITUTE REPORTING DATE : 27/Feb/2025 04:32PM

CLIENT ADDRESS : NASIRPUR, HISSAR ROAD, AMBALA CITY - HARYANA

Test Name Value Unit **Biological Reference interval**

HOMOCYSTEINE

HOMOCYSTEINE: SERUM 14.1 µmol/L 3.0 - 18.0by SPECTROPHOTOMETRY

INTERPRETATION:

- 1. Homocysteine is a sulphur containing amino acid. There is an association between elevated levels of circulating homocysteine and various vascular and cardiovascular disorders
- 2. Serum Homocystein level aid in screening patients suspected of having an inherited disorder of methionine metabolism including genetic defects in vitamin cofactors (vitamin B6, B12, and folate).
- 3. Nutritional deficiency of B12 and folate also lead to abnormal homocysteine accumulation.
- 4. Homocysteine concentration is an indicator of acquired folate or cobalamin deficiency, and is a contributing factor in the pathogenesis of neural tube defects.
- 5. Homocystenemia was previously thought to be an independent risk factor for coronary artery disease but current understanding suggests that the use of homocysteine for assessment of cardiovascular risk is uncertain and controversial. Based on several meta-analyses, at present, homocysteine may be regarded as a weak risk factor for coronary heart disease, and there is a lack of direct causal relationship between hyperhomocysteinemia and cardiovascular disease. It is most likely an indicator of poor lifestyle and diet.
- 6. Specially useful in young CVD patients (< 40 yrs) In known cases of CVD, high homocysteine levels should be used as a prognostic marker for CVD events and mortality CVD patients with homocysteine levels > 15 umol/L belong to a high risk group Increased homocysteine levels with low vitamin concentrations should be handled as a potential vitamin deficiency case.
- 7. This test should be used in conjunction with plasma amino acids and urine organic acids to aid in the biochemical screening for primary and secondary disorders of methionine metabolism.
- 8.Note:-Homocysteine concentrations >13 mcmol/L are considered abnormal in patients evaluated for suspected nutritional deficiencies (B12, folate) and inborn errors of metabolism. Measurement of methylmalonic acid (MMA) distinguishes between B12 (cobalamin) and folate deficiencies, as MMA is only elevated in B12 deficiency. Response to dietary treatment can be evaluated by monitoring serum homocysteine concentrations over time.
- 9. Homocysteine concentrations < or = 10 mcmol/L are desirable when utilized for cardiovascular risk.
- 10. Other factors that may influence and increase serum homocysteine include: Age, Smoking, Poor diet, Chronic renal, disease, Hypothyroidism

NOTE:

- 1. Medications that may increase homocysteine concentrations include: Methotrexate, Azuridine, Nitrous Oxide, Phenytoin, Carbamazepine, Oral Contraceptives
- 2.A fasting specimen is recommended; however, nonfasting homocysteine concentrations produce slightly higher, but likely clinically insignificant changes.

*** End Of Report ***

DR.VINAY CHOPRA CONSULTANT PATHOLOGIST MBBS, MD (PATHOLOGY & MICROBIOLOGY)

